A New Proof of Completeness of S4 with Respect to the Real Line
نویسندگان
چکیده
It was proved in McKinsey and Tarski [7] that every finite wellconnected closure algebra is embedded into the closure algebra of the power set of the real line R. Pucket [10] extended this result to all finite connected closure algebras by showing that there exists an open map fromR to any finite connected topological space. We simplify his proof considerably by using the correspondence between finite topological spaces and finite quasi-ordered sets. As a consequence, we obtain that the propositional modal system S4 of Lewis is complete with respect to Boolean combinations of countable unions of convex subsets of R, which is strengthening of McKinsey and Tarski’s original result. We also obtain that the propositional modal system Grz of Grzegorczyk is complete with respect to Boolean combinations of open subsets of R. Finally, we show that McKinsey and Tarski’s result can not be extended to countable connected closure algebras by proving that no countable Alexandroff space containing an infinite ascending chain is an open image of R.
منابع مشابه
Fractal Completeness Techniques in Topological Modal Logic: Koch Curve, Limit Tree, and the Real Line
This paper explores the connection between fractal geometry and topological modal logic. In the early 1940’s, Tarski showed that the modal logic S4 can be interpreted in topological spaces. Since then, many interesting completeness results in the topological semantics have come to light, and renewed interest in this semantics can be seen in such recent papers as [1], [2], [3], [4], and [7]. In ...
متن کاملA proof of topological completeness for S4 in (0, 1)
The completeness of the modal logic S4 for all topological spaces as well as for the real line R, the n-dimensional Euclidean space R and the segment (0, 1) etc. (with 2 interpreted as interior) was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvi...
متن کاملStrong completeness of S4 wrt the real line
In the topological semantics for modal logic, S4 is well-known to be complete wrt the rational line and wrt the real line: these are special cases of S4’s completeness wrt any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but strongly complete, wrt the rational line. But no similarly easy amendment is avai...
متن کاملReasoning About Space: The Modal Way
We investigate the topological interpretation of modal logic in modern terms, using a new notion of bisimulation. We look at modal logics with interesting topological content, presenting, among others, a new proof of McKinsey and Tarski’s theorem on completeness of S4 with respect to the real line, and a completeness proof for the logic of finite unions of convex sets of reals. We conclude with...
متن کاملCompleteness of S4 with respect to the real line: revisited
We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski (Ann. of Math. (2) 45 (1944) 141). We also prove that the same result holds for the bimodal system S4 + S5 + C, which is a strengthening of a 1999 result of Shehtman (J. Appl. Non-Classical Logics 9 (1999) 369). © 2004 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002